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Reflection invariance of the current in the totally asymmetric simple exclusion process
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We show that for the totally asymmetric simple exclusion process on a ring, with arbitrary choice of hopping
rates across different bonds of the system, the current is independent of the direction of the jumps.
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In [1] Tripathy and Barma study, among other models, thePoisson process with rai€b); we also relabel the set con-

asymmetric simple exclusion proced2,3] in a one-
dimensional ring geometry, with an arbitrary choice of hop-
ping rate for each bond of the systdthis is the disorder of
our title). They observe in simulations and numerical solu-
tions of small systems that for the totally asymmetric pro-

sisting of all of these times for all of the bonds, plus the time
0, in increasing order: 8 7o<7;<7,<--- (the event that
any two of the timesr, , coincide has probability zero and
can be ignored The timesr;, j=1, are the possible tran-
sition times for the process. For given initial configurations

cess, in which jumps are allowed in only one direction, thet,7 We define two processep,=(pi(i))ica and X\

system current is the san(ep to a sign whether the permit-

=(\(i))ica, t=0, taking values in the space of configura-

ted jumps are to the right or the left, although the steadyfions, as follows:(i) po=¢, Xo=17; (i) p; and A are con-
state probabilities of individual configurations in these twoStant on each time intervgk; _;, 7j); and(iii) if 7j=, for
systems do not seem to be simply related. They remark alsd= (Pi,br) and somex, then

that the equality of these two currents follows from simple
arguments when the system contains one parficteone
hole) or is half filled.

In this paper we show that this symmetry holds for any

number of particles. The essential idea is to couple one of

these two processes with the time reversal of the other; th

two coupled processes have jumps in the same direction and

we can show, using the coupling, that the current in the . . . .
g ping Note thatp, describes particles moving to the right and

)pérticles moving to the left. When necessary we indicate the
dependence of these processes on the choice of times and of

reversed process is at most that in the unreversed proce
Exchanging the two processes yields the opposite inequalit
completing the proof.

We remark that this essential idea can be used to prove
similar result for the totally asymmetric simple exclusion
process in an open systemlosites in which the.— 1 bonds
of the system are assigned arbitrary hopping rates: The cu
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igitial configuration by writingp(7,¢) or \{(7,7), wherer
enotes the family of all timesy, .
Now we wish to follow the trajectories of individual par-

ficles. To do so it is convenient to defieperiodic exten-

rent in the process in which particles enter the system at rat@ions pr. A Of p,\¢ to the entire integer latticep,(i +L)

a on the left, traverse the system using these rates, and exit
rate 8 on the right, is equalup to a sign to the current when
particles enter the system at rgeon the right and exit at
rate a on the left. We will, however, give details only for the
ring geometry.

Consider then a periodic system withparticles on a set
of sitesA={0,1, ... L—1}; a configuration of the system is
an elementy e {0,1}" satisfying=_, 7(i)=N, where 7(i)
=1 if there is a particle at siteand »(i)=0 otherwise. A
bondb is a pair ©,,b,), where eitherlf, ,b,)=(i,i +1) for
someie{0,1,...L—2} or (b;,b,)=(L—1,0). With each
bondb there is associated a positive numiéb), the rate at
which particles attempt to cross that bond. For any configu
ration » and bondb we write %° for the configuration ob-
tained fromy by interchanging the states at sitgsandb, .

atp:(i) for ieZ and p(i)=pi(i) for ie A, with a similar
definition ofA; . We will then also think of the rateqb) and
the exchange times, as defined for all bondb=(i,i +1),
again periodically: x(i,i+1)=x(i+L,i+L+1) and
T(ii+1)k= T(i+Li+L+1)k for allieZ.

Consider firstp;. Let us consecutively number the par-
ticles in the configuratiop,, choosing arbitrarily some start-
ing particle, so that,,(0) is the location of particlen, m
eZ. The periodicity of the configuration implies that
rmen(0)=r,(0)+L. We may then follow these particles
through time in the obvious way;,(t) never decreases and
an exchange ip, across the bontd=(i,i+1) (and all itsL
translatep at time 7;=r7,, corresponds to an increase
rm(7j)) =rm(7j-1)+1 for all m such thatr,(7;_,) is anL
translate of. The value ofr ,(t) depends orrand{ as well

We now give a construction of the random processes was on the choice of starting place for the particle numbering,

will consider. For each bonl we introduce an independent
sequence of random times<Ory, ;<7,,<--- defining a
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but the total number of jump&f a representative set of
particleg between times 0 and,
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REFLECTION INVARIANCE OF THE CURRENT IN THE . ..

FIG. 1. Space-time diagram of typical trajectorig$t),l»(t)

(heavy solid linesin the caseL=4, N=2. Light dashed vertical

lines represent sites; light horizontal lines represent the tipgest !
which hopping can occur. Every translate by four sites of one of thé'® given by

trajectories shown is also a trajectory; one of these is shown as a

dotted line.

N
J,<T;r.z>=mE:l[rm<T;r,§)—rm<0:r,z>], (2)

is independent of this choice. The currg¢nfor the p process
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FIG. 2. Typical trajectories; (s),l5(s) (heavy solid linesand
r.(s),r,(s) (heavy dashed lingsn the caseL=4, N=2. Thel}
trajectories are the reversals of therajectories of Fig. 1.
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FIG. 3. Behavior of the trajectoridg,(s), |} 1(S), rm(s), and
rm+1(s) for s=u.

whereE"r denotes expectation with respect to the distribu-
tion of the timesr, , and the measure, on the initial con-
figuration{, and v, is the invariant measure for the process
Pt-
We obtain, similarly, nonincreasing trajectorie¢g(t)
=1,(t; 7, ) corresponding ta; |,(t) is determined byr,

7, and a choice of starting point for the particle numbering.
In analogy with Eqs(2) and (3), the signed total number
Ji(T; r,n) of jumps in the interva[0,T] and the currenf,

N
J|<T;r,n>=m§1[Im<T;r,n>—lm<o;r,n>] (4

and

1
Ii=FE(T), (5

with v, the invariant measure for the process
We now want to show thaty=—j,. To do so we fix a

time T>0 and IetX;‘ be the process obtained from by
time reversal on the interv@D,T]:

N2 (7, m) = Nr_o(T, 7). 6)

The process\(7,7) has trajectories,(t;7,7) obtained as
above and the proces§ has trajectoriesy (s;7,7) =In(T
—s;7,m) (thel* and\} processes are left rather than right
continuous in time, but this makes no difference in what
follows). Suppose that for the bortathere areK(b) times
Ty IN the interval[0,T], i.e., thatry, y () <T <7y k(p)+1; WE
then defineoy, =T — 7y, k) +1-«k- FOr eachb the timesoy,
satisfy 0<op 1< <opkmp<T and have the same distri-
bution as ther, \, that is, they form a Poisson process on
[O,T]; these are the times at which jumps can occur across
bondb in the \¥ process.

Consider now simultaneously witk} (7,7) the process
ps(a,{), with o= o(7) as just described and with the initial
configuration{ chosen independently af and . Consider
also trajectories (s; o, {) for this process, with the labeling
m chosen so that

I* (0)<r 4(0)<I*(0)+2L (7)

for all m. To achieve this one may, for example, tak¢0)
to be the first particle in thg, configuration to the right of
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1X(0). A possible space-time picture with two particles in abe taken arbitrarily large we conclude that —j,. How-
box of four sites is illustrated in Fig. 1, which shows the ever, reversing the argument proves the opposite inequality,

unreversed trajectoriels (t) and1,(t), and Fig. 2, which soj,=—j.
shows the time-reversed trajectorlggs) andl3 (s) and the It remains to verify Eq(8). The key idea is that a particle
trajectories (s) andr ,(s); for illustrative purposes we have r(s) jumps at the first opportunity, an opportunity provided
here chosemhy (0)=r(0) andl%(0)=r,(0). by the occurrence of an appropriate timg, and by an
We claim that in fact empty site to the particle’s right, and that a particlgs) at
% (s)<r(s) for all m and all s=0 ® the same site cannot jump any sooner. For a formal proof we

argue as follows. Certainly Ed8) holds for s=0 by the

(see Fig. 2 Granting this claim for the moment, we see, Choice of numbering of the particles jiy [see Eq/(7)]; if it

using Eq.(7), that dpes not holgl fo.r gll times, lat be the infimum.of the set of
times for which it is violated. Then necessarily- oy, | for
J(T;0,0)=—J(T,7,7)—2LN (9  someb=(i,i+1) andk. Choosee>0 so that no other tran-

sition time o occurs in the intervalu—€,u+€]. Then Eq.
(8) holds at timeu— e and is violated at timei+ €, so for
1 some m, Ip(u—e€)=rn(u—€)=i and I;(u+e)=ry(u
JIr= BT +€)+1=i+1. However, the fact thaf, increases at tima
implies that thel, particle is not blocked, so thaf, ,(u

1 . 2N —€)>I*(u—€)+1, and the fact that,, does not increase

=— —E""[J(T)+2LN]=—j——. (10 _<~'m S m

LT (3D ] I T (10 implies that ther,, particle is blocked, so that, ;(u—¢)

, . . =rp,(u—€)+1. The situation must be as shown in Fig. 3.
Here E’r'"! denotes expectation with respect to the PO'SSO'However then *

times, the measurg on 7, and the measure, on {; we have m+1(U~ €)=Tmi1(U€), contradicting the
used Egs(3) and(5) and the fact thal, does not depend on

n nor J, on /. We emphasize that in E¢L0), J, depends on We thank M. Barma, N. Rajewsky, and G. Tripathy for
the 7 througho=o(7) and the first equality follows from Eq. helpful comments. The work of S.G. was supported by the
(3) becauser and r have the same distribution. Sinfemay =~ NSF under Grant No. DMS 95-04556.

and hence that

choice ofu.
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