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Reflection invariance of the current in the totally asymmetric simple exclusion process
with disorder

S. Goldstein and E. R. Speer
Department of Mathematics, Rutgers University, New Brunswick, New Jersey 08903

~Received 27 May 1998!

We show that for the totally asymmetric simple exclusion process on a ring, with arbitrary choice of hopping
rates across different bonds of the system, the current is independent of the direction of the jumps.
@S1063-651X~98!00710-7#

PACS number~s!: 05.20.2y, 02.50.Ey
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In @1# Tripathy and Barma study, among other models,
asymmetric simple exclusion process@2,3# in a one-
dimensional ring geometry, with an arbitrary choice of ho
ping rate for each bond of the system~this is the disorder of
our title!. They observe in simulations and numerical so
tions of small systems that for the totally asymmetric p
cess, in which jumps are allowed in only one direction,
system current is the same~up to a sign! whether the permit-
ted jumps are to the right or the left, although the stea
state probabilities of individual configurations in these tw
systems do not seem to be simply related. They remark
that the equality of these two currents follows from simp
arguments when the system contains one particle~or one
hole! or is half filled.

In this paper we show that this symmetry holds for a
number of particles. The essential idea is to couple one
these two processes with the time reversal of the other;
two coupled processes have jumps in the same direction
we can show, using the coupling, that the current in
reversed process is at most that in the unreversed pro
Exchanging the two processes yields the opposite inequa
completing the proof.

We remark that this essential idea can be used to pro
similar result for the totally asymmetric simple exclusio
process in an open system ofL sites in which theL21 bonds
of the system are assigned arbitrary hopping rates: The
rent in the process in which particles enter the system at
a on the left, traverse the system using these rates, and e
rateb on the right, is equal~up to a sign! to the current when
particles enter the system at rateb on the right and exit at
ratea on the left. We will, however, give details only for th
ring geometry.

Consider then a periodic system withN particles on a se
of sitesL5$0,1, . . . ,L21%; a configuration of the system i
an elementhP$0,1%L satisfying( i 51

L h( i )5N, whereh( i )
51 if there is a particle at sitei andh( i )50 otherwise. A
bondb is a pair (bl ,br), where either (bl ,br)5( i ,i 11) for
some i P$0,1, . . . ,L22% or (bl ,br)5(L21,0). With each
bondb there is associated a positive numberx(b), the rate at
which particles attempt to cross that bond. For any confi
ration h and bondb we write hb for the configuration ob-
tained fromh by interchanging the states at sitesbl andbr .

We now give a construction of the random processes
will consider. For each bondb we introduce an independen
sequence of random times 0,tb,1,tb,2,••• defining a
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Poisson process with ratex(b); we also relabel the set con
sisting of all of these times for all of the bonds, plus the tim
0, in increasing order: 05t0,t1,t2,••• ~the event that
any two of the timestb,k coincide has probability zero an
can be ignored!. The timest j , j >1, are the possible tran
sition times for the process. For given initial configuratio
z,h we define two processesr t5„r t( i )…i PL and l t
5„l t( i )…i PL , t>0, taking values in the space of configur
tions, as follows:~i! r05z, l05h; ~ii ! r t and l t are con-
stant on each time interval@t j 21 ,t j ); and~iii ! if t j5tb,k for
b5(bl ,br) and somek, then

rt j
5H rt j 21

b if rt j 21
~bl !51, rt j 21

~br !50,

rt j 21
otherwise,

~1!

lt j
5H lt j 21

b if lt j 21
~bl !50, lt j 21

~br !51,

lt j 21
otherwise.

Note thatr t describes particles moving to the right andl t
particles moving to the left. When necessary we indicate
dependence of these processes on the choice of times a
initial configuration by writingr t(t,z) or l t(t,h), wheret
denotes the family of all timestb,k .

Now we wish to follow the trajectories of individual par
ticles. To do so it is convenient to defineL-periodic exten-
sions r̂ t ,l̂ t of r t ,l t to the entire integer lattice:r̂ t( i 1L)
5 r̂ t( i ) for i PZ and r̂ t( i )5r t( i ) for i PL, with a similar
definition ofl̂t . We will then also think of the ratesx(b) and
the exchange timestb as defined for all bondsb5( i ,i 11),
again periodically: x( i ,i 11)5x( i 1L,i 1L11) and
t ( i ,i 11),k5t ( i 1L,i 1L11),k for all i PZ.

Consider firstr̂ t . Let us consecutively number the pa
ticles in the configurationr̂0, choosing arbitrarily some start
ing particle, so thatr m(0) is the location of particlem, m
PZ. The periodicity of the configuration implies tha
r m1N(0)5r m(0)1L. We may then follow these particle
through time in the obvious way:r m(t) never decreases an
an exchange inr̂ t across the bondb5( i ,i 11) ~and all itsL
translates! at time t j5tb,k corresponds to an increas
r m(t j )5r m(t j 21)11 for all m such thatr m(t j 21) is an L
translate ofi. The value ofr m(t) depends ont andz as well
as on the choice of starting place for the particle numberi
but the total number of jumps~of a representative set ofN
particles! between times 0 andT,
4226 © 1998 The American Physical Society
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Jr~T;t,z!5 (
m51

N

@r m~T;t,z!2r m~0;t,z!#, ~2!

is independent of this choice. The currentj r for ther process
is

j r5
1

LT
EnrJr~T!, ~3!

FIG. 1. Space-time diagram of typical trajectoriesl 1(t),l 2(t)
~heavy solid lines! in the caseL54, N52. Light dashed vertical
lines represent sites; light horizontal lines represent the timestb,k at
which hopping can occur. Every translate by four sites of one of
trajectories shown is also a trajectory; one of these is shown
dotted line.

FIG. 2. Typical trajectoriesl 1* (s),l 2* (s) ~heavy solid lines! and
r 1(s),r 2(s) ~heavy dashed lines! in the caseL54, N52. The l i*
trajectories are the reversals of thel i trajectories of Fig. 1.
whereEnr denotes expectation with respect to the distrib
tion of the timestb,k and the measuren r on the initial con-
figurationz, andn r is the invariant measure for the proce
r t .

We obtain, similarly, nonincreasing trajectoriesl m(t)
5 l m(t;t,h) corresponding tol̂t ; l m(t) is determined byt,
h, and a choice of starting point for the particle numberin
In analogy with Eqs.~2! and ~3!, the signed total numbe
Jl(T;t,h) of jumps in the interval@0,T# and the currentj l
are given by

Jl~T;t,h!5 (
m51

N

@ l m~T;t,h!2 l m~0;t,h!# ~4!

and

j l5
1

LT
En lJl~T!, ~5!

with n l the invariant measure for the processl t .
We now want to show thatj l52 j r . To do so we fix a

time T.0 and let l̂s* be the process obtained froml̂t by
time reversal on the interval@0,T#:

l̂s* ~t,h!5l̂T2s~t,h!. ~6!

The processl̂t(t,h) has trajectoriesl m(t;t,h) obtained as
above and the processl̂s* has trajectoriesl m* (s;t,h)5 l m(T
2s;t,h) ~the l * and l̂s* processes are left rather than rig
continuous in time, but this makes no difference in wh
follows!. Suppose that for the bondb there areK(b) times
tb,k in the interval@0,T#, i.e., thattb,K(b),T,tb,K(b)11; we
then definesb,k5T2tb,K(b)112k . For eachb the timessb,k
satisfy 0,sb,1,•••,sb,K(b),T and have the same distr
bution as thetb,k , that is, they form a Poisson process
@0,T#; these are the times at which jumps can occur acr
bondb in the l̂s* process.

Consider now simultaneously withl̂s* (t,h) the process
r̂s(s,z), with s5s(t) as just described and with the initia
configurationz chosen independently oft and h. Consider
also trajectoriesr m(s;s,z) for this process, with the labeling
m chosen so that

l m* ~0!<r m~0!, l m* ~0!12L ~7!

for all m. To achieve this one may, for example, taker 1(0)
to be the first particle in ther̂0 configuration to the right of

e
a

FIG. 3. Behavior of the trajectoriesl m* (s), l m11* (s), r m(s), and
r m11(s) for s.u.
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l N* (0). A possible space-time picture with two particles in
box of four sites is illustrated in Fig. 1, which shows th
unreversed trajectoriesl 1(t) and l 2(t), and Fig. 2, which
shows the time-reversed trajectoriesl 1* (s) and l 2* (s) and the
trajectoriesr 1(s) andr 2(s); for illustrative purposes we hav
here chosenl 1* (0)5r 1(0) andl 2* (0)5r 2(0).

We claim that in fact

l m* ~s!<r m~s! for all m and all s>0 ~8!

~see Fig. 2!. Granting this claim for the moment, we se
using Eq.~7!, that

Jr~T;s,z!>2Jl~T;t,h!22LN ~9!

and hence that

j r5
1

LT
Enr ,n lJr~T!

>2
1

LT
Enr ,n l@Jl~T!12LN#52 j l2

2N

T
. ~10!

HereEnr ,n l denotes expectation with respect to the Pois
times, the measuren l onh, and the measuren r on z; we have
used Eqs.~3! and~5! and the fact thatJr does not depend on
h nor Jl on z. We emphasize that in Eq.~10!, Jr depends on
thet throughs5s~t! and the first equality follows from Eq
~3! becauses andt have the same distribution. SinceT may
n

be taken arbitrarily large we conclude thatj r>2 j l . How-
ever, reversing the argument proves the opposite inequa
so j r52 j l .

It remains to verify Eq.~8!. The key idea is that a particle
r m(s) jumps at the first opportunity, an opportunity provide
by the occurrence of an appropriate timesb,k and by an
empty site to the particle’s right, and that a particlel m* (s) at
the same site cannot jump any sooner. For a formal proof
argue as follows. Certainly Eq.~8! holds for s50 by the
choice of numbering of the particles inr̂0 @see Eq.~7!#; if it
does not hold for all times, letu be the infimum of the set o
times for which it is violated. Then necessarilyu5sb,k for
someb5( i ,i 11) andk. Choosee.0 so that no other tran
sition times j occurs in the interval@u2e,u1e#. Then Eq.
~8! holds at timeu2e and is violated at timeu1e, so for
some m, l m* (u2e)5r m(u2e)5 i and l m* (u1e)5r m(u
1e)115 i 11. However, the fact thatl m* increases at timeu
implies that thel m* particle is not blocked, so thatl m11* (u
2e). l m* (u2e)11, and the fact thatr m does not increase
implies that ther m particle is blocked, so thatr m11(u2e)
5r m(u2e)11. The situation must be as shown in Fig.
However, thenl m11* (u2e).r m11(u2e), contradicting the
choice ofu.
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